
Dependent coordinates in path integral measure factorization

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 7019

(http://iopscience.iop.org/0305-4470/37/27/011)

Download details:

IP Address: 171.66.16.91

The article was downloaded on 02/06/2010 at 18:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/27
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 7019–7038 PII: S0305-4470(04)66462-6

Dependent coordinates in path integral measure
factorization

S N Storchak

Institute for High Energy Physics, Protvino, Moscow Region, 142284, Russia

E-mail: storchak@mx.ihep.su

Received 22 July 2003, in final form 1 March 2004
Published 22 June 2004
Online at stacks.iop.org/JPhysA/37/7019
doi:10.1088/0305-4470/37/27/011

Abstract
The transformation of the path integral measure under the reduction procedure
in dynamical systems with a symmetry is considered. Investigation is carried
out in the case of the Wiener-type path integrals that are used for description
of the diffusion on a smooth compact Riemannian manifold with the given
free isometric action of the compact semisimple unimodular Lie group. The
transformation of the path integral, which factorizes the path integral measure,
is based on the application of the optimal nonlinear filtering equation from the
stochastic theory. The integral relation between the kernels of the original and
reduced semigroups is obtained.

PACS numbers: 03.65.Bz, 31.15.Kb

1. Introduction

The standard approach to path integral quantization of gauge field theories is based on the
Faddeev–Popov method [1] by which a path integral over invariant variables is rewritten as a
path integral over variables constrained by some gauge conditions. But in order to obtain such
a representation, it is necessary to separate the path integral measure into two parts related,
correspondingly, to gauge-invariant (independent) and gauge-dependent (or group) degrees of
freedom. However, in general it is unknown whether or not this separation of the path integral
measure leads to some Jacobian in the path integral measure.

In the present paper we consider the path integral quantization problem for a scalar particle
which moves on a smooth compact Riemannian manifold (without boundary). We suppose
that there exists a free effective isometric action of the compact semisimple unimodular Lie
group on this manifold. In the problem considered, as in gauge field theories, an original
manifold can be regarded as a total space of the principal fibre bundle. The principal bundle
picture permits us to introduce new coordinates on the original manifold. As the coordinate
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functions of a chart in the manifold atlas, we can take the invariant variables and the group-
valued variables. The invariant variables are related to the orbit space of the fibre bundle. And
the group-valued variables are defined by the group element which ‘measures’ the distance
between a point considered in the total space of the fibre bundle and a point in the base space
which can be reached along the orbit.

The path integral quantization of the present problem was considered in [2, 3] by using
the definitions of the path integrals based on discrete approximations. In our papers [4, 5],
we studied the quantization of this problem with the help of the path integrals in which the
path integral measures were defined by stochastic processes. It was found there that the
factorization of the path integral measure can be performed by applying the nonlinear filtering
equation from the stochastic process theory.

In gauge field theories the description of the evolution on the orbit space is usually given
by imposing the gauge conditions (or gauges) on the gauge variables. From the local point of
view the gauge conditions (given by the system of equations) define a local submanifold in
the original manifold. In turn, the submanifold can be viewed as a local section of a principal
fibre bundle.

There is a local isomorphism between the initial principal fibre bundle and the trivial
principal fibre bundle which has this local submanifold as the base space [6]. It allows us to
use the constrained (or dependent) coordinates as the coordinates on our principal fibre bundle.

If these local submanifolds (local sections) are parts of some global submanifold (a global
section), then our initial principal fibre bundle is a trivial one. And in this case, our dependent
coordinates have a global meaning. But in general, there is no global section in the principal
fibre bundle. So, in a local neighbourhood of each point of the initial manifold, one should
introduce its own dependent coordinates.

After performing local factorization of the path integral measure into the ‘group measure’
and the measure that is given on the local section, one should solve the problem of the definition
of a global measure related to the set of these local measures.

A possible solution of such a problem was proposed in [7], where the global path integral
measure was defined in terms of local measures given on the local sections. Therefore, we
will study the dependent coordinate description of particle motion in the particular case of the
trivial principal fibre bundle.

The representation of the orbit space path integral as the integral over the dependent
variables was studied in many papers (see, for example, [8–10]). But the path integral measure
factorization questions were not considered there. In the present paper, we will investigate
the transformation of the path integral measure on changing the path integral variables for
the dependent ones in the Wiener-like path integrals that are used to describe the ‘quantum’
motion of a scalar particle on a manifold.

2. Definitions

The objects of our consideration will be the path integrals representing the solution of the
backward Kolmogorov equation given on a smooth compact Riemannian manifold P:

(
∂

∂ta
+

1

2
µ2κ�P(pa) +

1

µ2κm
V (pa)

)
ψtb (pa, ta) = 0

ψtb (pb, tb) = φ0(pb) (tb > ta).

(1)

In this equation µ2 = h̄
m

, κ is a real positive parameter, �P(pa) is a Laplace–Beltrami
operator on manifold P and V (p) is a group-invariant potential term. In a chart (U, ϕA) with
the coordinate functions QA = ϕA(p), p ∈ P , the Laplace–Beltrami operator is given as
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�P(Q) = G−1/2(Q)
∂

∂QA
GAB(Q)G1/2(Q)

∂

∂QB

where the matrix GAB(Q) is the inverse of the matrix of the Riemannian metric GAB given in
the coordinate basis

{
∂

∂QA

}
; G = det(GAB).

In order to obtain the Schrödinger equation from equation (1), one should perform a
transition to the forward Kolmogorov equation and then change κ for i. If the coefficients of
the backward Kolmogorov equation are properly restricted to the definite class of functions,
then the fundamental solution of a backward equation also satisfies a forward equation.
However, the transition from the Wiener-like path integrals to the Feynman ones is a special
problem which needs further investigation and is not considered in the paper.

There are different representations of the solution of equation (1) in terms of the path
integral. We will use the definition of the path integral in [11], together with the assumptions
that all necessary smoothness conditions take place in our paper. From [11], the solution of
(1) can be written as follows:

ψtb (pa, ta) = E

[
φ0(η(tb)) exp

{
1

µ2κm

∫ tb

ta

V (η(u)) du

}]
=

∫
�−

dµη(ω)φ0(η(tb)) exp{· · ·} (2)

where η(t) is a global stochastic process on a manifold P . �− = {ω(t) : ω(ta) = 0, η(t) =
pa + ω(t)} is the path space on this manifold and the path integral measure µη is defined by
the probability distribution of a stochastic process η(t).

In the chart (U, ϕ) from the atlas of the manifold P , the global stochastic process η(t)

is given by the local processes ϕ(η) = ηϕ(t) ≡ {ηA(t)} that are solutions of the stochastic
differential equations:

dηA(t) = 1

2
µ2κG−1/2 ∂

∂QB
(G1/2GAB) dt + µ

√
κXA

M̄
(η(t)) dwM̄(t) (3)

where the matrix XA
M̄

is defined by the local equality
∑nP

K̄=1
XA

K̄
XB

K̄
= GAB .

(Here and in what follows we denote the Euclidean indices by overbarred indices.)
According to [11], the global semigroup determined by equation (2) acts in the space of

smooth and bounded functions on P . It is defined by the limit (under the refinement of the
time interval) of the superposition of the local semigroups

ψtb (pa, ta) = U(tb, ta)φ0(pa) = limqŨη(ta, t1) · · · Ũη(tn−1, tb)φ0(pa) (4)

where, in turn, each of the local semigroups Ũ η is related to the local representative of the
global stochastic process η.

One of the main advantages of definition (4) is that it permits us to derive the transformation
properties of the path integral (2) by studying the local semigroups Ũη:1

Ũη(s, t)φ(p) = Es,pφ(η(t)) s � t η(s) = p.

These local semigroups are also given by the path integrals with the integration measures
determined by the local representatives ϕP(η(t)) = ηϕP

(t) ≡ {ηA(t)} of the global stochastic
process η(t).

1 In the following, we omit the potential term of the Hamiltonian operator as it is inessential for us in performing the
path integral transformations. It will be recovered in our final formulae.
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3. Principal fibre bundle coordinates

The problem, which we consider in the paper, is related to the investigation of the reduction
procedure in dynamical systems with symmetry. Due to a symmetry, the initial dynamical
system is reduced to a system that can be described in terms of some invariant variables. The
geometry of this problem is well developed [12].

A free (effective) action of the compact semisimple group Lie G on a smooth compact
manifold2 P leads to the orbit-fibreing of the manifold P . And we can regard the manifold
P as the total space of the principal fibre bundle P(M,G) where the orbit space M is a base
space.

From the bundle picture it follows that locally manifold P has the product structure:
π−1(Ux) ∼ Ux × G, where Ux is an open neighbourhood of the point x = π(p) which
belongs to the chart (Ux, ϕx) of the bundle P(M,G). Therefore, we can use the principal
bundle coordinates (xi, aα) (i = 1, . . . , NM, NM = dimM, α = 1, . . . , NG, NG = dimG,
NP = NM + NG) of the point p ∈ P instead of the initial coordinates QA of this point. The
problem consists of a definition of the coordinates (xi, aα) from the known initial coordinates
QA.

As invariant coordinates xi(Q) (the orbit space coordinates) of a point p, it is possible to
take a set of functionally independent and G-invariant functions that are solutions of the special
differential equations. In many cases, it is very difficult to find the solutions of these differential
equations. However, there exists another method of the orbit space coordinatization in which
the necessary invariant coordinates are defined with the help of the gauge constraints.

It is supposed that in each sufficiently small neighbourhood of the point p ∈ P , there is
a set of functions {χα(Q), α = 1, . . . , NG} that can be used (by the equation χα(Q) = 0)
to determine a local submanifold of the manifold P . (This submanifold should have the
transversal intersection with each of the orbits.) Then the coordinates on the manifold P can
be introduced as follows.

By our assumption, we have the action of the group G on the manifold P: p̃ = pa, or in
coordinates: Q̃A = FA(QB, aα), where QA are the coordinates of a point p. We assume that
it is a right action, i.e. (pa1)a2 = p(a1a2):

F(F(Q, a1), a2) = F(Q,�(a1, a2))

where � is the function which determines the group multiplication law in the space of the
group parameters.

The group coordinates aα(Q) of a point p ∈ P are defined as coordinates of that group
element which carries the point p to the local submanifold {χα(Q) = 0}. These group
coordinates are given by the solution of the following equation:

χα(FA(Q, a−1(Q))) = 0.

The invariant coordinates xi(Q) of a point p are the coordinates of that point of the
submanifold {χα(Q) = 0} which is obtained from the point p under the action of the group
element with the coordinates aα(Q). If the submanifold {χα(Q) = 0} is given parametrically:
QA = Q∗A(xi), the coordinates xi(Q) are defined by the equation

Q∗A(xi) = FA(Q, a−1(Q)).

Such an approach to the coordinatization of the orbit space was considered in [13]. Besides,
in these papers the geometrical generalization of the Bogolubov coordinate transformation
method from [14] was given.

2 In our case this is an isometric action on a Riemannian manifold.
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The path integral transformation, induced by the replacement of the coordinates QA

for the coordinates (xi(Q), aα(Q)) and the factorization of the path integral measure, was
investigated in [5]. In the present paper we study the same problem, but now together
with the group coordinates aα (obtained by a previous method) we will use the constrained
(or dependent) coordinates Q∗A: {χα(Q∗A) = 0}. The point with the coordinates Q∗A

belongs to the local submanifold {χα = 0} in the original manifold P .
We will assume that these local submanifolds form a global submanifold  in the original

manifold P . Therefore, our principal fibre bundle P(M,G) is a trivial one.
Notice that there is a local isomorphism of the principal fibre bundle P(M,G) and the

trivial principal fibre bundle P =  × G →  [6, 7]. From this fact it follows that for the
total space P of the principal fibre bundle P(M,G), we can define a new atlas with the charts
that are related to the submanifold .

The relation between the constrained coordinates Q∗ and the initial coordinates QA of
a point p is given by the equation QA = FA(Q∗A, aα). Later we will see that an apparent
ambiguity of a transition from QA to (Q∗A, aα) is compensated by the presence of the
corresponding projection operators in the resulting expressions.

The representation of a Riemannian metric of the manifoldP in new coordinates (Q∗A, aα)

is obtained from the transformation of the coordinate vector fields. It is given as follows:

∂

∂QB
= FC

B (F (Q∗, a), a−1)NA
C (Q∗)

∂

∂Q∗A

+ FE
B (F (Q∗, a), a−1)χ

µ

E(Q∗)(�−1)βµ(Q∗)v̄α
β (a)

∂

∂aα
. (5)

Here FC
B (Q, a) ≡ ∂FC

∂QB (Q, a), χ
µ

E ≡ ∂χµ

∂QE (Q), (�−1)βµ(Q)—the matrix which is inverse to the
Faddeev–Popov matrix:

(�)βµ(Q) = KA
µ (Q)

∂χβ(Q)

∂QA

(Kµ are the Killing vector fields for the Riemannian metric GAB(Q)), the matrix v̄α
β (a) is the

inverse of the matrix ūα
β(a). det ūα

β(a) is the density of a right-invariant measure given on the
group G.

NA
C is the projection operator

(
NA

B NB
C = NA

C

)
onto the subspace which is orthogonal to

the Killing vector field subspace:

NA
C (Q) = δA

C − KA
α (Q)(�−1)αµ(Q)χ

µ

C (Q).

In (5), this projection operator is restricted to the submanifold {χα = 0}:
NM

D (Q∗) ≡ NM
D (F(Q∗, e)) NM

D (Q∗) = FB
D (Q∗, a)NA

B (F (Q∗, a))FM
A (F (Q∗, a), a−1)

e is the unity element of the group. Formula (5) is similar to the corresponding formula from
[9, 15]. Many facts about the dependent coordinate can be found, for example, in [16].

As an operator, the vector field ∂
∂Q∗A is defined by the rule

∂

∂Q∗A
ϕ(Q∗) = (P⊥)DA(Q∗)

∂ϕ(Q)

∂QD

∣∣∣∣
Q=Q∗

where P⊥ is a projection operator on the tangent plane to the submanifold given by the
gauges χ :

(P⊥)AB = δA
B − χα

B(χχ	)−1β
α(χ	)Aβ .

Here (χ	)Aβ is a transposed matrix to the matrix χν
B :

(χ	)Aµ = GABγµνχ
ν
B γµν = KA

µ GABKB
ν .
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The above projection operators have the following properties:

(P⊥)ÃBNC

Ã
= (P⊥)CB NÃ

B (P⊥)C
Ã

= NC
B .

In the new coordinate basis the metric GAB is written as a metric G̃AB(Q∗, a) with the
following components:(

GCD(Q∗)(P⊥)CA(P⊥)DB GCD(Q∗)(P⊥)DAKC
µ ūµ

α (a)

GCD(Q∗)(P⊥)CAKD
ν ūν

β(a) γµν(Q
∗)ūµ

α (a)ūν
β(a)

)
(6)

where the projection operators P⊥ depend on Q∗, i.e., they are restricted to the submanifold,
GCD(Q∗) ≡ GCD(F (Q∗, e)):

GCD(Q∗) = FM
C (Q∗, a)FN

D (Q∗, a)GMN(F (Q∗, a)).

The pseudoinverse matrix G̃
AB

(Q∗, a) to matrix (6) is as follows:(
GEF NC

E ND
F GSDNC

S χ
µ

D(�−1)νµv̄σ
ν

GCBχ
γ

C (�−1)βγ ND
B v̄α

β GCBχ
γ

C (�−1)βγ χ
µ

B (�−1)νµv̄α
β v̄σ

ν

)
. (7)

In (7), v̄σ
ν ≡ v̄σ

ν (a) and other components depend on Q∗.
The pseudoinversion of G̃BC means that

G̃
AB

G̃BC =
(

(P⊥)CB 0
0 δα

β

)
.

The determinant of matrix (6) is equal to

(det G̃AB) = det GAB(Q∗) det γαβ(Q∗)(det χχ	)−1(Q∗)
(
det ūµ

ν (a)
)2

×(
det �α

β(Q∗)
)2

det(P⊥)CB(Q∗).

It does not vanish only on the surface {χ = 0}. On this surface det(P⊥)CB is equal to unity.

4. Transformation of the stochastic process and the semigroup

The replacement of the coordinates leads to a new representation of the local stochastic process
ηA(t) on the principal fibre bundle. From the obtained local processes, we can form, by using
the method in [11], a new global process ζ(t). This means that we have performed the
transformation of the global process η(t) to the process ζ(t).

The global process ζ(t) has two kinds of local components: (Q∗A(t), aα(t)). The
components aα(t) describe the part of the stochastic evolution that originates from the
stochastic evolution that was given on the group G. The Q∗A(t) evolution has its origin
in the stochastic evolution given on the submanifold .

Although the process Q∗A(t) is described in terms of the dependent coordinates,
the transformation of the local stochastic process ηA(t) to the local process ζA(t) =
(Q∗A(t), aα(t)) is, in fact, the phase space transformation of the process ηA(t). It takes
place since the condition χα(Q∗) = 0, which is also valid for the stochastic processes Q∗(t),
restricts a number of dependent coordinates.

But it is known that the phase space transformation of the stochastic processes does not
change the probabilities. It means that the action of the local semigroup Ũη on a function
ϕ0(p) is equal to the expectation of the transformed function given a σ algebra generated by
the transformed process ζA(t).

In charts of the manifold P , this transition to new coordinates can be considered as
follows. The local semigroup

Ũη(s, t)φ0(p) = Es,pφ0(η(t)) s � t η(s) = p
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for the process η(t) which is restricted to the chart (Vp, ϕP) with

ϕP(η(t)) = ηϕP
(t) ≡ {ηA(t)}

can be written as

Ũη(s, t)φ0(p) = Es,ϕP (p)φ0
(
(ϕP)−1(ηϕP

(t)
))

ηϕP
(s) = ϕP(p).

The phase space transformation of the local stochastic processes

ηA(t) = FA(Q∗B(t), aα(t))

transforms the local semigroup Ũη:

Ũη(s, t)φ0(p) = Es,ϕ̃P (p)φ0
(
(ϕ̃P)−1

(
ζ ϕ̃P

(t)
)) = Es,ϕ̃P (p)φ̃0

(
ζ ϕ̃P

(t)
)

where (ϕ̃P)−1 = (ϕP)−1 ◦ F and φ̃0 = φ0 ◦ (ϕ̃P)−1.
Therefore, after changing the coordinates in our local semigroups we should take the

expectation values with respect to the measures defined by the probability distribution of the
local processes ζ ϕ̃P

(t) = (Q∗A(t), aα(t)). If these processes are consistent with each other
on overlapping of the charts, we can define, by the method in [11], the global process and
global semigroup. In turn, the consistence of the local processes is verified by studying the
transformations of the local stochastic differential equations that are used to define the local
stochastic processes.

5. Stochastic differential equations

Let us consider the stochastic differential equation for the component Q∗A of the local
stochastic process ζA(t) = (Q∗A(t), aα(t)). We assume that the stochastic differential
equation for this variable has the following form:

dQ∗A(t) = b∗A(t) dt + c∗A
B̄
(t) dwB̄(t) (8)

where we should define explicitly the drift and the diffusion coefficients.
We know that the variable Q∗A is related to the variable QA by the equation:

Q∗A = FA(Q, a−1(Q)).

There exists the same relation between the stochastic variable Q∗A(t) and the stochastic
variable ηA(t).

Therefore, we can apply the Itô differentiation formula to the stochastic variable Q∗A(t).
We get

dQ∗A(t) = ∂Q∗A

∂QE
dηE(t) +

1

2

∂2Q∗A

∂QE∂QC
〈dηE(t) dηC(t)〉. (9)

Then, putting the expression of the stochastic differential dηA(t) from (3) into the right-
hand side of (9), we obtain:

dQ∗A(t) = ∂Q∗A

∂QE

(
−1

2
µ2κGPB(η(t))�E

PB(η(t)) dt + µ
√

κXE
M̄

(η(t)) dwM̄(t)

)
+

1

2

∂2Q∗A

∂QE∂QC
〈dηE(t) dηC(t)〉 (10)

where �E
PB are the Christoffel coefficients for the Riemannian metric GAB .

In order to obtain the stochastic differential equation for Q∗(t), we should express the
stochastic variable ηA(t) in the last equation in terms of Q∗A(t) and aα(t). It can be done by
using the equation ηA(t) = FA(Q∗B(t), aα(t)).
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Performing this transformation, we find that the coefficient differential dt in the obtained
expression will be the drift of equation (8). And, correspondingly, the term with the stochastic
differential dw(t) will be the diffusion coefficient. As a result, we obtain the following
equation for Q∗(t):

dQ∗A(t) = 1

2
µ2κ

[
NA

C NR
MG(Q∗(t))−1/2 ∂

∂Q∗R
(G(Q∗(t))1/2GCM(Q∗(t)))

+ NA
CLGCL − GPCNK

C KM
µM(�−1)µν χν

P + GPCNA
C KE

µP (�−1)µν χν
E

+ GPBNA
C KC

µB(�−1)µν χν
P

]
dt + µ

√
κNA

C X̃C
M̄

(Q∗(t)) dwM̄(t). (11)

In this equation all variables depend on Q∗(t) and by additional lower indices we denote the
corresponding derivatives. (For example, NA

CL(Q∗) ≡ ∂
∂QL NA

C (Q)|Q=Q∗ .) The variable X̃ in

equation (11) is defined by the equality:
∑nP

K̄=1
X̃A

K̄
(Q∗)X̃B

K̄
(Q∗) = GAB(Q∗).

The stochastic differential equation for the group variable aα(t) can be obtained by the
same method as was done for the variable Q∗A(t). We get the following equation:

daα = −1

2
µ2κ

[
GRS�̃B

RS(Q
∗)�β

Bv̄α
β + GRP�σ

R�
β

BKB
σP v̄α

β − GCANM
C

∂

∂Q∗M

(
�

β

A

)
v̄α

β

−GMB�ε
M�

β

Bv̄ν
ε

∂

∂aν

(
v̄α

β

)]
dt + µ

√
κv̄α

β�
β

BX̃B
M̄

dwM̄ (12)

where v̄ ≡ v̄(a) and other coefficients depend on Q∗. Also, we have introduced a new
notation:

�α
B = (�−1)αµχ

µ

B .

In (12), the Christoffel symbols �̃B
RS(Q

∗) are obtained from �A
BC(Q), if in its standard definition

we transform the derivatives of the metric tensor by formula (5).
In the stochastic differential equation (11) obtained, the drift term has a rather complicated

expression. However, it is possible to simplify its expression by using the relation of the drift
to the geometrical data.

6. Geometry of the drift coefficient

In the previous section we have obtained a local stochastic differential equation for the process
ζA(t) = (Q∗A(t), aα(t)). The differential generator of this process is the Laplace–Beltrami
operator �P of (1) expressed in new variables (Q∗A, aα). The drift terms of stochastic
differential equation (11) are equal to the terms linear in derivatives of this transformed
Laplacian. Hence, we have a correspondence between the stochastic differential equation of
the process ζA(t) and its differential generator. Our study of the drift geometry will be based
on this correspondence.

For further transformation, it would be very useful for us to regroup the original Laplacian
�P (given in Q variables) in such a way that we will have an opportunity to reveal the
geometrical structures of our problem. It was done in [3], where the Laplace–Beltrami
operator was presented in the following form:

1
2�P(Q) = 1

2

(⊥GAB∇A∇B − KA
µ γ µν

(∇AKB
ν

)∇B + KA
α γ αβ∇BKB

β ∇B

)
(13)

where ⊥GAB = GAB − KA
α γ αβKB

β , and ∇A is the symbol of the covariant derivative which is
obtained with the Christoffel coefficients for the original Riemannian metric GAB(Q).

Now we are interested in the correspondence between the drift terms of the stochastic
differential equation (11) and the operator obtained from the Laplace–Beltrami operator (13)
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after the replacement of the variables Q for the variables (Q∗, a). Since the drift terms of (11)
depend on Q∗, we restrict our attention only to the coefficients of the first partial derivatives
over Q∗ in the transformed Laplacian. It can be shown that the terms (we are interested in) are
obtained only from the first and second parts of the Laplacian (13). The sum of these terms is
equal to the drift of stochastic differential equation (11).

Therefore, in the drift terms of (11), we select two groups of terms. In accordance with
their ‘origin’, we denote them by bA

I (Q∗) and bA
II (Q

∗).
First we consider the geometry of bA

II (Q
∗). By performing the necessary calculations,

it can be proved that bA
II (Q

∗) is given by the projection on the submanifold {χα = 0} of the
mean curvature vector of the orbit

jD(Q)
∂

∂QD
= 1

2
�D

A(Q)γ αβ(Q)
[∇Kα(Q)Kβ(Q)

]A ∂

∂QD
.

The projection operator �D
A = δD

A −KD
µ γ µνKC

ν GCA extracts the direction which is normal to
the orbit: �D

AKA
α = 0.

Since we have the Riemannian metric G̃AB (together with G̃
AB

which is its inversion),
we can form the projection of this mean curvature as follows:

G̃
SL

G̃

(
jD ∂

∂QD
,

∂

∂Q∗S

)
∂

∂Q∗L
.

Note that before evaluation of the projection we have changed the variables Q in jD ∂
∂QD for

Q∗ and a.
As a result, we get the following expression for bA

II (Q
∗):

bA
II (Q

∗) = 1
2GEUNA

E ND
U

[
γ αβGCD

(∇̃Kα
Kβ

)C]
in which all the values on the right-hand side depend on Q∗ and by

(∇̃Kα
Kβ

)C
(Q∗) we denote

KA
α (Q∗)

∂

∂QA
KC

β (Q)

∣∣∣∣
Q=Q∗

+ KA
α (Q∗)KB

β (Q∗)�̃C
AB(Q∗)

where

�̃C
AB(Q∗) = 1

2
GCE(Q∗)

(
∂

∂Q∗A
GEB(Q∗) +

∂

∂Q∗B
GEA(Q∗) − ∂

∂Q∗E
GAB(Q∗)

)
.

Now we proceed to the investigation of the geometry of bA
I (Q∗), which, we recall, is

obtained from the first term of the Laplacian expansion in (13). The relation of bA
I (Q∗) to the

geometry of the problem can be found as follows.
Note that in the local picture, the projection onto the orbit space M, which is locally

isomorphic to , is realized by taking QA = Q∗A(x) in the expressions that depend on Q.
On the orbit space, the first term on the right-hand side of equation (13) (written in (Q∗, a)

variables) will be the Laplace–Beltrami operator given on the manifold (M, hij ) with the
induced metric

hij (x) = Q∗A
i (x)GH

AB(Q∗(x))Q∗B
j (x).

Here GH
AB = �D

AGBD . (So, the superscript H will mean horizontality.)
In operators, the transition from  to M is obtained by using the replacement of the

derivatives: ∂

∂Q∗A = T i
A

∂
∂xi , where T i

A = (P⊥)SAGH
SEQ∗E

k (x)hki (here P⊥ and GH depend on

Q∗(x)). An inverse replacement is given by ∂
∂xi = Q∗A

i (x) ∂

∂Q∗A .
The orbit space diffusion is locally described by the following stochastic differential

equation:

dxi(t) = − 1
2µ2κhkl(x(t))�i

kl(x(t)) dt + µ
√

κXi
m̄(x(t)) dwm̄(t)

in which the Christoffel coefficients correspond to the metric hij (x).
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By all these transformations we come to the following chain of correspondences. The
drift of the above stochastic differential equation is related to the coefficients at the first partial
derivative over x in the Laplace–Beltrami operator on M. On , this drift is presented by
the corresponding coefficients at the first partial derivative over Q∗ in the expression obtained
from the first term of the Laplacian (13). And also, we have already established that this
coefficient is equal to bI.

Therefore, we have reduced our problem of the geometrical representation for bI to the
same problem but for the drift of the stochastic differential equation given on M.

It is known that if a submanifold is embedded into some external manifold, we can
describe diffusion on this submanifold not only by means of the internal variables (given on a
submanifold) but also with the external variables. A particular case of such a description was
considered in [17], where the Euclidean space was taken as an external manifold. It is not
difficult to find a similar description for a general case (see the appendix).

Note that the orbit space is a submanifold in the (Riemannian) manifold
(
P,GH

AB(Q)
)

with the degenerate metric GH
AB . Therefore, in our case, we shall also use the method from

the appendix for the derivation of the stochastic differential equations that are given in the
external variables.

But we should slightly correct the calculations from the appendix. In formulae from the
appendix, we must change the metric GAB for the degenerate metric GH

AB . As a consequence,
instead of relation (A.4) in the appendix we will have

hkl(x)�i
kl = GH

AB

(
Q∗A

klh
kl + H�A

CDQ∗C
k Q∗D

l hkl
)
himQ∗B

m

where GH
AB(Q∗(x))H �B

CD(Q∗(x)) is defined as

GH
AB

H�B
CD = 1

2

(
GH

AC,D + GH
AD,C − GH

CD,A

)
. (14)

In (14), by derivatives we mean the following: GH
AC,D ≡ ∂GH

AC(Q)

∂QD

∣∣
Q=Q∗(x)

.
As a result of our calculation, we get the following expression for drift of the orbit space

stochastic differential equation:

bA
I (Q∗(x)) = − 1

2GEM(Q∗(x))NC
E (Q∗(x))NB

M(Q∗(x))H �A
CB(Q∗(x)) + jA

I

where jI is the mean curvature vector of the orbit space. It can be evaluated as follows:

jA
I = 1

2

(
δA
B − NA

B (Q∗(x))
)
hij (x)

[
Q∗B

ij + Q∗P
i Q∗L

j
H�B

PL(Q∗(x))
]
.

It was established earlier, that this drift coincides with bI. It is for this reason that we use
this notation for the drift of the stochastic differential equation given on the orbit space.

As a function, the mean curvature of the orbit space is given on a submanifold. In the
same way as done in the appendix, we can redefine the stochastic variables Q∗(x(t)) for new
stochastic variables Q∗(t). (We denote new stochastic variables by the same letter.)

Note that in equation (14), the Christoffel symbols H�B
CD are defined up to the terms T̃ B

CD

that are satisfied to GH
ABT̃ B

CD = 0. However, this ambiguity is not essential for us, since bI can
also be presented as

bA
I = − 1

2NA
E

H�E
CDNC

KND
U GKU + 1

2NA
LMNL

KNM
U GKU .

Thus, now we know the relation of bI and bII to the geometrical values. And it permits
us to rewrite equation (8) as follows:

dQ∗A(t) = µ2κ
(− 1

2GEMNC
E NB

M
H�A

CB + jA
I + jA

II

)
dt + µ

√
κNA

C X̃C
M̄

dwM̄ (15)

where all the values on the right-hand side depend on Q∗(t). In the above equation, we have
introduced a new notation for bA

II . It was denoted by jA
II .
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The solutions of the stochastic differential equations (15) and (12) are local representatives
of the stochastic process ζ(t). In charts of the manifold, a set of the solutions of these equations
determines the local stochastic evolution families of mappings of the manifold P . As in [11],
with these local families it is possible to define the global stochastic process ζ(t) which consists
of two components related, correspondingly, to the stochastic evolution on the submanifold 

(the gauge surface) and to the stochastic evolution on the orbit of the principal fibre bundle.
The transformation of the stochastic process η(t), considered in the previous sections,

leads to the corresponding transformation of the global semigroup (4). Now, the global
semigroup is determined by the superposition of the local semigroups Ũ

ζϕP :

ψtb (pa, ta) = limqŨζϕP (ta, t1) · · · Ũ
ζϕP (tn−1, tb)φ̃0(Q

∗
a, θa) (16)

where

Ũ
ζϕP (s, t)φ̃0(Q

∗
0, θ0) = Es,(Q∗

0,θ0)φ̃0(Q
∗(t), a(t)) Q∗(s) = Q∗

0 a(s) = θ0.

We will write this global semigroup in the following symbolic form:

ψtb (pa, ta) = E

[
φ̃0(ξ(tb), a(tb)) exp

{
1

µ2κm

∫ tb

ta

Ṽ (ξ(u)) du

}]
where ξ(ta) = Q∗

a , a(ta) = θa , ϕP (pa) = (Q∗
a, θa). In this formula we have taken into

account an earlier omitted potential term.
It follows from (15) and (12) that the coordinate representation of the differential generator

of the semigroup related to the stochastic process ζ(t) is given by

1

2
µ2κ

(
GCDNA

C NB
D

∂2

∂Q∗A∂Q∗B
− GCDNA

C NB
D

H�E
AB

∂

∂Q∗E
+ jA

I
∂

∂Q∗A

+ jA
II

∂

∂Q∗A
+ GAB�α

A�
β

BL̄αL̄β − GRS�̃B
RS�

α
BL̄α − GRP �σ

R�α
BKB

σP L̄α

+ GCANM
C

∂

∂Q∗M

(
�α

A

)
L̄α + 2GBCNA

C �α
BL̄α

∂

∂Q∗A

)
+

1

µ2κm
Ṽ .

Here all the values, except for L̄, depend on Q∗.

7. Factorization of the path integral measure

In [4, 5], a new method of factorization of the path integral measure was proposed. The main
idea of [4] was to exploit the stochastic differential equation in the nonlinear filtering theory
[18, 19]. This equation describes the evolution of the conditional mathematical expectation
of the signal process (the process a(t) in our case) with respect to the σ algebra generated by
an observable process (the stochastic process Q∗(t)).

In the global semigroup (16) obtained, each local semigroup Ũ
ζϕP can be presented as

follows:

Ũ
ζϕP (s, t)φ̃(Q∗

0, θ0) = E
[
E

[
φ̃(Q∗(t), a(t)) | (FQ∗)ts

]]
. (17)

This transformation is based on the properties of the conditional expectation of the Markov
processes. The above path integral transformation can also be viewed as an analogue of the
transition from the multiple integrals to the repeated ones in the ordinary integration.

The conditional mathematical expectation on the right-hand side of (17),

ˆ̃
φ(Q∗(t)) ≡ E

[
φ̃(Q∗(t), a(t)) | (FQ∗)ts

]
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should satisfy the nonlinear filtering equation. We use the definition of this equation in
[18, 19]. In our case, it is derived by using the stochastic differential equations (15) and (12).
The nonlinear filtering stochastic differential equation of our problem is as follows:

d ˆ̃
φ = −1

2
µ2κ

(
GRS�̃B

RS�
β

B + GRP �σ
R�

β

BKB
Pσ − GCANM

C

∂

∂Q∗M

(
�

β

A

))
× E

[
L̄β φ̃ | (FQ∗)ts

]
dt +

1

2
µ2κGCB�ν

C�κ
BE

[
L̄νL̄κ φ̃ | (FQ∗)ts

]
dt

+ µ
√

κ�
β

C�C
KX̃K

M̄
E

[
L̄βφ̃ | (FQ∗)ts

]
dwM̄. (18)

It is possible to perform a separation of the variables in this equation. It can be done by
applying the Peter–Weyl theorem to the function φ̃ considered as a function given on a group G.
Using this theorem, the function φ̃ can be presented as

φ̃(Q∗, a) =
∑
λ,p,q

cλ
pq(Q

∗)Dλ
pq(a)

where Dλ
pq(a) are the matrix elements of an irreducible representation T λ of a group G:∑

q Dλ
pq(a)Dλ

qn(b) = Dλ
pn(ab).

Using the properties of the conditional mathematical expectations, we have

E
[
φ̃(Q∗(t), a(t)) | (FQ∗)ts

] =
∑
λ,p,q

cλ
pq(Q

∗(t))E
[
Dλ

pq(a(t)) | (FQ∗)ts
]

≡
∑
λ,p,q

cλ
pq(Q

∗(t))D̂λ
pq(Q

∗(t))

where

cλ
pq(Q

∗(t)) = dλ

∫
G
ϕ̃(Q∗(t), θ)D̄λ

pq(θ) dµ(θ)

dλ is the dimension of an irreducible representation and dµ(θ) is a normalized
( ∫

G dµ(θ) = 1
)

invariant Haar measure on a group G.
Then, as in [4, 5], we get the stochastic differential equation for the conditional

mathematical expectation D̂λ
pq :

dD̂λ
pq(Q

∗(t)) = −1

2
µ2κ

{[
GRS�̃B

RS�
µ

B + GRP �σ
R�

µ

BKB
Pσ

−GCANM
C

∂

∂Q∗M

(
�

β

A

)]
(Jβ)λpq ′D̂

λ
q ′q(Q

∗(t))

−GCB�α
C�ν

B(Jα)λpq ′(Jν)
λ
q ′q ′′D̂

λ
q ′′q(Q

∗(t))
}

dt

+ µ
√

κ�ν
C�C

K(Jν)
λ
pq ′D̂

λ
q ′q(Q

∗(t))X̃K
M̄

(Q∗(t)) dM̄ (t) (19)

in which (Jµ)λpq ≡ ( ∂Dλ
pq (a)

∂aµ

)∣∣
a=e

are the infinitesimal generators of the representation Dλ(a):

L̄µDλ
pq(a) =

∑
q ′

(Jµ)λpq ′D
λ
q ′q(a).

We note that the conditional expectation D̂λ
pq(Q

∗(t)) also depends on the initial points
Q∗

0 = Q∗(s) and θα
0 = aα(s).

The solution of the linear matrix stochastic differential equation (19) can be written [20]
as follows:

D̂λ
pq(Q

∗(t)) = (←−exp)λpn(Q
∗(t), t, s)E

[
Dλ

nq(a(s)) | (FQ∗)ts
]

(20)
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where

(←−exp)λpn(Q
∗(t), t, s) = ←−exp

∫ t

s

{
1

2
µ2κ

[
γ̄ σν(Q∗(u))(Jσ )λpr(Jν)

λ
rn

−
(
GRS�̃B

RS�
β

B + GRP �σ
R�

β

BKB
Pσ − GCANM

C

∂

∂Q∗M

(
�

β

A

))
(Jβ)λpn

]
du

+ µ
√

κ�
β

C(Jβ)λpn�
C
KX̃K

M̄
dwM̄

}
(21)

is a multiplicative stochastic integral. This integral is a limit of the sequence of time-ordered
multipliers that have been obtained as a result of breaking a time interval [s, t], [s = t0 �
t1 · · · � tn = t]. In (21), the time order of these multipliers is indicated by the arrow directed
to the multipliers given at greater times.

Taking into account the representation for D̂λ
pq obtained in (20) and (21), we rewrite our

local semigroup (17) as follows:

Ũ
ζϕP (s, t)φ̃(Q∗

0, θ0) =
∑

λ,p,q,q ′
E

[
cλ
pq(Q

∗(t))(←−exp)λpq ′(Q
∗(t), t, s)

]
Dλ

q ′q(θ0) (22)

where we have taken into account that

E
[
Dλ

nq(a(s)) | (FQ∗)ts
] = Dλ

nq(a(s)) = Dλ
nq(θ0).

In order to obtain the global semigroup by the methods in [11], one should take the
piecewise breaking of the time interval [ta, tb], [ta = t0 � t1 · · · � tn = tb] and then take
the superposition of the local semigroups that are similar to (22). The global semigroup for
the global process is obtained as a limit (under the refinement of the subdivision of the time
interval) of the superposition of these local semigroups.

We write the result of the limiting procedure, which is the relation between the global
semigroups, in the following symbolic form:

ψtb (pa, ta) =
∑

λ,p,q,q ′
E

[
cλ
pq(ξ(tb))(

←−exp)λpq ′(ξ(t), tb, ta)
]
Dλ

q ′q(θa) (ξ(ta) = π | ◦ pa)

(23)

where ξ(t) is a global stochastic process defined on the submanifold . This process is
described locally by equations (15).

Thus, our initial original path integral has been rewritten as the sum of the matrix
semigroups (the path integrals) that are given on the submanifold . The differential generator
(the Hamiltonian operator) of these matrix semigroups is

1

2
µ2κ

{[
GCDNA

C NB
D

∂2

∂Q∗A∂Q∗B
− GCDNE

C NM
D

H�A
EM

∂

∂Q∗A
+

(
jA

I + jA
II

) ∂

∂Q∗A

]
(I λ)pq

+ 2NA
C GCP �α

P (Jα)λpq

∂

∂Q∗A
−

(
GRS�̃B

RS�
α
B + GRP �σ

R�α
BKB

Pσ

−GCANM
C

∂

∂Q∗M

(
�α

A

))
(Jα)λpq + GSB�α

B�σ
S (Jα)λpq ′(Jσ )λq ′q

}
(24)

where (I λ)pq is a unity matrix.
The operator acts in the space of the section �(, V ∗) of the associated covector bundle.

The scalar product in the space of the sections �(, V ∗) is defined as follows:

(ψn, ψm) =
∫



〈ψn,ψm〉V ∗
λ

det �α
β

det1/2
(
χ

µ

AGABχν
B

) dv (25)

where dv is the Riemannian volume element on .
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An integration measure of the scalar product in formula (25) has been obtained from the
Riemannian volume element of the manifold P , in which we have changed the variables QA

for (Q∗i , aα). Also, we make use of the equality:

det GAB(Q∗i ,Q∗α(Q∗i ), aµ) = det ((G)AB) det−1((GBCχν
Bχ

µ

C

)
�−1α

µ�−1β
ν v̄σ

α v̄
ρ
β

)
.

Note that the metric (G)AB(Q∗i ,Q∗α(Q∗i )) is a restriction of the metric
(P⊥)CA(Q∗)GCD(Q∗)(P⊥)DB (Q∗) to the surface .

Performing the transformation of the measure in integral (25), we can also present the
scalar product in the following form:

(ψn, ψm) =
∫

〈ψn,ψm〉V ∗
λ

det �α
β

NG∏
α=1

δ(χα(Q∗)) det1/2GAB dQ∗1 ∧ · · · ∧ dQ∗NP .

In order to get the representation of the semigroups (the path integrals) that are given
under the sign of the sum in (23) in terms of the semigroups on P , we should take the inverse
of equality (23). As in [5], we will do it for the kernels of the corresponding local semigroups.

Provided that the necessary restrictions are fulfilled, the semigroup on the left-hand side
of (23) has the kernel and can be presented as

ψtb (pa, ta) =
∫

GP(pb, tb;pa, ta)φ0(pb) dvP(pb). (26)

Using the partition of the unity subordinated to a local finite covering of the manifold P
and keeping in mind that there is a local isomorphism of P(,G) with the trivial principal
fibre bundle ϕ

αb

(
U

αb

) × G, by which a chart in the atlas of the manifold P is changed for the
chart ϕ

αb

(
U

αb

) × G, we obtain the following expression for the right-hand side of (26):∑
αb

∫
ϕ

αb
(U

αb
)×G

˜̃µαb
(xb)GP(αb, F (Q∗

b, θb), tb;βa, F (Q∗
a, θa), ta)φ̃0(Q

∗
b, θb) dv(Q∗

b) dµ(θb) (27)

where dv(Q∗) is the same volume measure as in (25) and dµ(θ) = det ūα
β(θ) dθ1 · · · dθNG is

a Haar measure on a group G.
A local representation of the right-hand side of (23) can also be given as∑

αb

∫
ϕ

αb
(U

αb
)

ρ̃αb
(xb)

∑
λ,p,q,q ′

Gλ
q ′p(αb,Q

∗
b, tb;βa,Q

∗
a, ta)c

λ
pq(Q

∗
b)D

λ
q ′q(θa) dv(Q∗

b). (28)

Comparing (27) and (28), we find the relation between the local Green functions:∫
G
GP(αb, F (Q∗

b, θb), tb;βa, F (Q∗
a, θa), ta)D

λ
pq(θb) dµ(θb)

=
∑
q ′

Gλ
q ′p(αb,Q

∗
b, tb;βa,Q

∗
a, ta)D

λ
q ′q(θa)

which, by the unimodularity of the group G, can be easily reversed:

Gλ
mn(αb,Q

∗
b, tb;βa,Q

∗
a, ta) =

∫
G
GP (αb,Q

∗
b, θ, tb;βa,Q

∗
a, e, ta)D

λ
nm(θ) dµ(θ). (29)

In this formula, e corresponds to the unity element of a group G and

GP (αb,Q
∗
b, θb, tb;βa,Q

∗
a, θa, ta) ≡ GP(αb, F (Q∗

b, θb), tb;βa, F (Q∗
a, θa), ta).

In the case of the trivial principal fibre bundle, gluing of these local Green functions can
be done with the help of the transition coordinate functions defined in the manifold atlas. It
gives rise to the global Green function.
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Therefore, equality (29) can be extended from the local charts to the whole manifold and
we obtain the relation between the Green function defined on the global manifolds:

Gλ
mn(π(pb), tb;π(pa), ta) =

∫
G
GP(pbθ, tb;pa, ta)D

λ
nm(θ) dµ(θ). (30)

The path integral on the left-hand side of this equality can be written symbolically as

Gλ
mn(π(pb), tb;π(pa), ta)

= Ẽ ξ (ta )=π(pa )

ξ (tb)=π(pb)

[
(←−exp)λmn(ξ(t), tb, ta) exp

{
1

µ2κm

∫ tb

ta

Ṽ (ξ(u)) du

}]
=

∫
ξ (ta )=π(pa )

ξ (tb)=π(pb)

dµξ exp

{
1

µ2κm

∫ tb

ta

Ṽ (ξ(u)) du

}

×←−exp
∫ tb

ta

{
1

2
µ2κ

[
γ σν(ξ(u))(Jσ )λmr(Jν)

λ
rn

−
(

GRS�̃B
RS�

β

B + GRP �σ
R�

β

BKB
Pσ − GCANM

C

∂

∂Q∗M

(
�

β

A

))
(Jβ)λmn

]
du

+ µ
√

κ�
β

C(Jβ)λmn�
C
KX̃K

M̄
dwM̄

}
. (31)

The semigroup, given by this kernel, acts in the space of the equivariant functions:

ψ̃n(pg) = Dλ
mn(g)ψ̃m(p).

ψ̃n are isomorphic to the functions ψn that belong to the space of the sections �(, V ∗) of
the associated covector bundle:

ψ̃n(F (Q∗, e)) = ψn(Q
∗).

The method, by which we have obtained the integral relation between Gλ
mn and GP , can be

considered as the realization of the reduction procedure in the path integrals for the dynamical
systems with a symmetry.

The reduction to the zero-momentum level, i.e., when λ = 0, establishes the relation
between the path integrals that are used for descriptions of the quantum motion of the scalar
particle on an initial manifold P and on the the orbit space manifold M.

In our case, in order to represent the motion on the orbit space, we have used an additional
gauge surface , on which the corresponding diffusion was given by the stochastic differential
equation (15). In this equation, in the drift, there is an ‘extra’ term jII , which has no direct
relation to the orbit space M.

Note that this term completely corresponds to the ‘extra’ term in the stochastic differential
equation from [4, 5]. It can be shown that this term is related to the volume of the orbit.

Without the jII term in the drift, we would have the stochastic process which describes a
‘pure’ diffusion. After changing the dependent coordinates Q∗ for the independent coordinates
xi , the differential generator of a diffusion becomes the Laplace–Beltrami operator given on
the orbit space M.

In the path integrals, the transformation in which we change the stochastic process ξ with
the local stochastic differential equation (15) for the process ξ̃ , with the stochastic differential
equation

dQ∗A(t) = µ2κ
(− 1

2GEMNC
E NB

M
H�A

CB + jA
I

)
dt + µ

√
κNA

C X̃C
M̄

dwM̄ (32)

can be made with the help of the Girsanov transformation formula.
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The presence of the projection operators in diffusion matrices of equations (15) and (32)
tells us that we have the degenerate diffusion matrices. It does not permit us to apply the
standard Girsanov formula.

But we can still derive the Girsanov formula if we confine ourselves by the scope of
the predefined ambiguities, which originate from the use of the projection operators. As in
the ordinary case, the derivation will also be based on the uniqueness (modulo the above
ambiguity) of the solution of the parabolic differential equation with the operator given by
the diagonal part of the operator (24). One can obtain the Girsanov formula by using the Itô
differentiation formula for the composite function and the following equality:(

GABNC
A ND

B

) (
(P⊥)EDGH

EM(P⊥)ML
) = (P⊥)CL.

The Radon–Nicodim derivative of the measure µξ with respect to the measure µξ̃ will
be as follows:

dµξ

dµξ̃

(ξ̃(t)) = exp
∫ t

ta

[
−1

2
µ2κ

(
(P⊥)LAGH

LK(P⊥)KE
)
jA
II j

E
II dt + µ

√
κGH

LK(P⊥)LAjA
II X̃

K
M̄

dwM̄

]
.

Performing such a change of the integration variables in that path integral which is
obtained as a result of the reduction to λ = 0 momentum level, we get the following integral
relation:

G(Q∗
b, tb;Q∗

a, ta) =
∫
G
GP(pbθ, tb;pa, ta) dµ(θ)

where the kernel G is presented by the path integral

G(Q∗
b, tb;Q∗

a, ta) =
∫

ξ̃ (ta )=Q∗
a

ξ̃ (tb)=Q∗
b

dµξ̃ exp

{
1

µ2κm

∫ tb

ta

V (ξ̃(u)) du

}

× exp
∫ tb

ta

{
−1

8
µ2κGABND

A NL
B

[
γ αβGDC

(∇̃Kα
Kβ

)C][
γ µνGLE

(∇̃Kµ
Kν

)E]
dt

+
1

2
µ

√
κND

P

[
γ αβGCD

(∇̃Kα
Kβ

)C]
X̃P

M̄
dwM̄

}
(Q∗ = π(p)).

The semigroup, determined by this path integral, acts in the space of the scalar functions
given on .

In the obtained formula, the reduction Jacobian has an additional stochastic integral. It
is possible to get rid of this stochastic integral with the help of the corresponding Itô identity.
But, as it requires further investigation, we do not give this transformation in the present paper.

Finally we note that in spite of the existing difference in form between the ultimate formula
obtained here and an analogous formula from [5], these formulae are equivalent to each other.
To verify this fact, one should compare the differential generators of their stochastic processes.
Changing the dependent coordinates Q∗ for independent one xi in the differential generator
for ξ gives the differential generator in [5] for the process given on the orbit space.

8. Conclusion

From the path integral transformation considered in the paper, it follows that the path integral
measure is not invariant under reduction (formulae (30) and (31)). Earlier, in [5], we studied
the path integral reduction in the case when the orbit space manifold was described in terms
of independent coordinates. These two approaches give, in fact, the same result expressed in
different forms. By the replacement of the coordinates, the corresponding path integrals can
be transformed to each other.
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The obtained reduction Jacobian reveals an interesting geometrical structure. Namely,
it is related to the mean curvature vector of the orbit over the point belonging to the base
space in the principal fibre bundle. We obtained this mean curvature term and the term related
to the mean curvature of the orbit space by considering the transformation of the stochastic
differential equation.

The roles of these mean curvature terms are different. The first mean curvature leads to the
Jacobian. The mean curvature of the orbit together with the Christoffel coefficient term makes
up the the standard drift term of the stochastic differential equation given on a submanifold.
It needs further investigation to elucidate the question of the origin of these mean curvature
terms. It may be supposed that they come from the mean curvature of the manifold P if we
view this manifold as the submanifold in some manifold with a larger dimension.

The noninvariance of the path integral measure under reduction was obtained in many
papers. Usually, the authors define the path integral with the help of some discrete
approximation for the corresponding kernels. Then, the appearance of the reduction Jacobian
is explained by the choice of the ‘true’ operator ordering together with the use of the Faddeev–
Popov trick. But this trick does not retain the group integration. Unlike the work [3], our
formulae have this integration. But the subject of consideration of [3] was the path integral for
the partition function. The standard approach to the representation of the Yang–Mills partition
function also does not have the group integration.

On the other hand, the necessity of the group integration in quantum mechanical path
integral reduction is verified by the path integral reduction performed for the homogeneous
space G/H [2] and by evaluations in concrete examples.

It is worth noting that in the functional integration of the quantum field theory there is
an approach [23] which is similar (regarding the presence of the group integration) to the
quantum mechanical path integral reduction.

Comparing our Jacobian with the Jacobian of the first authors in [2], we see that their
Jacobian (the Hamilton operator) is a particular case of ours. Our Hamiltonian has more
general dependence in part related to the Casimir operator. In fact, this comparision should be
done not with our present paper, but with [4, 5], since the authors deal with the independent
coordinate description of the orbit space. The Jacobian of our previous paper (in independent
variables) coincides with that in [3].
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Appendix. Stochastic differential equation on a submanifold

Let the manifold M be embedded into some smooth (compact) finite dimensional Riemannian
manifold with a metric GAB(Q). We assume that this embedding is locally given by the
equations QA = QA(xi), where {QA} is a coordinate system on the external manifold and
the coordinate system {xi} is given on M. Then, on a manifold M, we will have the induced
metric: hij (x) = QA

i (x)QB
j (x)GAB(Q(x)).

The stochastic process ξ(t) = {xi(t)}, with the differential generator 1
2�M (�M is

a Laplace–Beltrami operator on M), can be determined by the solution of the stochastic
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differential equation which has the following local representation:

dxk(t) = −1

2
hij (x(t))�k

ij (x(t)) dt + Xk
m̄(x(t)) dwm̄(t)

(∑
m̄

Xk
m̄Xl

m̄ = hkl

)
. (A.1)

Now, we will define the same stochastic process, but instead of the variables xi we will
make use of the variables QA. We assume that the stochastic differential equation which
describes the stochastic process on a submanifold can be written as

dQA(t) = aA dt + X̃A
M̄

dwM̄(t) (A.2)

where aA and X̃A
M̄

(t) are some (and not yet defined) functions of Q(t). Also, we assume that
at the initial moment the process QA(t) is given on a submanifold M.

In order to find the explicit expressions for the coefficients aA and X̃A
M̄

in equation (A.2)
we will apply the Itô differentiation formula to the function QA = QA(xi(t)). In the obtained
expression, together with the ordinary derivatives will be the differentials of the stochastic
variables xi(t). For these differentials the expressions can be taken from equation (A.1).

Then, comparing the result of such a differentiation with the expression on the right-hand
side of (A.2), we find that the coefficient aA is equal to

aA = − 1
2QA

i (x(t))hkl(x(t))�i
kl(x(t)) + 1

2QA
ij (x(t))hij (x(t)). (A.3)

But,

hkl(x)�i
kl(x) = GAB(Q(x))

(
QA

kl(x) + �A
CD(Q(x))QC

k (x)QD
l (x)

)
him(x)QB

m(x)hkl(x) (A.4)

(see, for example, [22]). Taking this into account and using the projection operators onto the
tangent space to the manifold M:

NC
B (Q(x)) = GBA(Q(x))QA

i (x)hij (x)QC
j (x)

from (A.3) we can obtain another expression for aA:

aA = − 1
2NA

P hijQC
i QD

j �P
CD − 1

2NA
P QP

klh
kl + 1

2QA
klh

kl. (A.5)

Since the components of the mean curvature vector of the submanifold are given by

jD = 1

2

(
δD
B − ND

B

)
hij

[
∇QP

i
∂

∂QP

(
QL

j

∂

∂QL

)]B

= 1

2
hij

(
QA

i QB
j �D

AB + QD
ij − ND

C QA
i QB

j �C
AB − ND

C QC
ij

)
we can rewrite (A.5) as follows:

aA(Q(x)) = − 1
2GEM(Q(x))NC

E (Q(x))NB
M(Q(x))�A

CB(Q(x)) + jA (A.6)

where jA is, in fact, the function given on a submanifold, i.e., jA ≡ jA(Q(x)). This follows
from the fact that the mean curvature can also be defined without using an explicit coordinate
expression (for example, by the Weingarten map).

Before proceeding to the determination of the diffusion coefficient X̃A
M̄

(t), we note that the
difussion coefficients of equations (A.1) and (A.2) are determined only up to the orthogonal
transformations.

The Itô differentiation of Q(x(t)) also gives the equality:

X̃A
M̄

dwM̄ = QA
i Xi

m̄ dwm̄.
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It then follows that∑
M̄

X̃A
M̄

X̃B
M̄

=
∑
m̄

QA
i Xi

m̄QB
j X

j
m̄ = hijQA

i QB
j = GCDNA

C NB
D.

Using these equations, we define X̃A
M̄

as

X̃A
M̄

= NA
C XC

M̄

(∑
M̄

XD
M̄

XC
M̄

= GCD

)
.

Finally, redefining the coordinates QA(x(t)) of the stochastic process for new coordinates
QA(t) (together with the requirement, that at the initial moment of time a new process also be
given on a submanifold M), we get the following local stochastic differential equation for the
components of the stochastic process on a submanifold M:

dQA(t) = (− 1
2GEMNC

E ND
M�A

CD + jA
)

dt + NA
C XC

M̄
dwM̄ (A.7)

where all the functions on the right-hand side of this equation now depend on QA(t).
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